MetricConv logo

Newton Converter

Convert Newton to Teranewton and more • 33 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

NewtonN

Source Unit

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

F = m * a

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

Fun Fact

The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.

TeranewtonTN

Target Unit

The teranewton (TN) is a derived unit of force in the International System of Units (SI) that represents one trillion newtons (10^12 N). The newton itself is the SI unit of force, defined as the force required to accelerate one kilogram of mass at a rate of one meter per second squared. The teranewton is primarily used in scientific contexts where extremely large forces are evaluated, such as in astrophysics, engineering of large structures, and various fields of high-energy physics. Due to the vast scales involved in such applications, the teranewton provides a convenient way to express these values without resorting to exponential notation. Its use reflects the growing need for units that can succinctly represent immense forces.

1 TN = 10^12 N

Current Use

The teranewton is predominantly used in fields that involve large-scale forces, such as aerospace engineering, astrophysics, and materials science. Engineers may use teranewtons to describe forces acting on spacecraft during launch or re-entry, where forces can exceed trillions of newtons due to gravitational forces. In geology, the teranewton can help quantify tectonic forces that shape the earth's crust. Countries with significant aerospace industries, like the USA, Russia, and members of the European Space Agency, frequently utilize this unit during the design and testing of rockets and satellites. Furthermore, in civil engineering, the teranewton is used to calculate forces in large structures like dams or bridges under extreme conditions, ensuring safety and stability. The unit is also applicable in research settings, for instance in experiments involving high-energy particle collisions where forces are measured in teranewtons.

Fun Fact

The teranewton is rarely encountered in daily life, as most forces are measured in much smaller units.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

N

Newton

forceSI Unit

Definition

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

History & Origin

The newton was introduced as a unit of force in 1948 at the 9th General Conference on Weights and Measures (CGPM) as part of the International System of Units (SI). This was done to standardize measurements internationally and to honor Sir Isaac Newton's foundational contributions to physics. Newton's work laid the groundwork for classical mechanics, particularly his laws of motion which are crucial to understanding force and its applications in various fields. The adoption of the newton helped facilitate a universal language in scientific discourse, allowing for more accurate communication and collaboration across different disciplines.

Etymology: The term 'newton' is derived from the name of Sir Isaac Newton, the renowned English mathematician, physicist, and astronomer, who is widely recognized for formulating the laws of motion and universal gravitation.

1948: Introduction of the newton as ...

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

PhysicsEngineeringAutomotiveRoboticsAerospace

💡 Fun Facts

  • The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.
  • A force of one newton is roughly the weight of a medium-sized apple.
  • In space, where gravity is negligible, the newton can still be used to measure forces exerted by spacecraft engines.

📏 Real-World Examples

9.81 N
The force required to lift a 1 kg object upwards at a constant speed
5 N
Force needed to accelerate a 5 kg cart from rest to 1 m/s²
20 N
Force exerted by a person pushing a shopping cart with a mass of 10 kg at 2 m/s²
147.15 N
Tension in a rope when lifting a 15 kg weight
100 N
The thrust produced by a small rocket engine generating 100 N of force
5000 N
Deceleration force applied to stop a 1000 kg car at a rate of 5 m/s²

🔗 Related Units

Pound-force (1 N = 0.225 lbf)Kilogram-force (1 N = 0.10197 kgf)Dyne (1 N = 100,000 dynes)Ton-force (1 N = 0.0002248 ton-force)Kilopond (1 N = 0.10197 kp)Joule per meter (1 N = 1 J/m)
TN

Teranewton

forceNon-SI

Definition

The teranewton (TN) is a derived unit of force in the International System of Units (SI) that represents one trillion newtons (10^12 N). The newton itself is the SI unit of force, defined as the force required to accelerate one kilogram of mass at a rate of one meter per second squared. The teranewton is primarily used in scientific contexts where extremely large forces are evaluated, such as in astrophysics, engineering of large structures, and various fields of high-energy physics. Due to the vast scales involved in such applications, the teranewton provides a convenient way to express these values without resorting to exponential notation. Its use reflects the growing need for units that can succinctly represent immense forces.

History & Origin

The concept of force has been integral to physics since the time of Isaac Newton in the 17th century. The newton was named in his honor and has been standardized since its formal introduction in 1948. The prefix 'tera-' meaning trillion (10^12), was adopted as part of the International System of Units (SI) in the 1960s, allowing for the formation of the teranewton. This unit is particularly relevant in modern physics and engineering, where forces can reach astronomical values, especially in fields like aerospace and materials science. The teranewton has thus emerged as an essential unit for expressing these large forces succinctly.

Etymology: The term 'teranewton' is derived from the prefix 'tera-' meaning trillion (10^12) in the metric system and 'newton', which is named after Sir Isaac Newton.

1948: The newton was formally recogn...1960: The prefix 'tera-' was adopted...

Current Use

The teranewton is predominantly used in fields that involve large-scale forces, such as aerospace engineering, astrophysics, and materials science. Engineers may use teranewtons to describe forces acting on spacecraft during launch or re-entry, where forces can exceed trillions of newtons due to gravitational forces. In geology, the teranewton can help quantify tectonic forces that shape the earth's crust. Countries with significant aerospace industries, like the USA, Russia, and members of the European Space Agency, frequently utilize this unit during the design and testing of rockets and satellites. Furthermore, in civil engineering, the teranewton is used to calculate forces in large structures like dams or bridges under extreme conditions, ensuring safety and stability. The unit is also applicable in research settings, for instance in experiments involving high-energy particle collisions where forces are measured in teranewtons.

AerospaceEngineeringAstrophysicsGeology

💡 Fun Facts

  • The teranewton is rarely encountered in daily life, as most forces are measured in much smaller units.
  • The prefix 'tera-' is derived from the Greek word 'teras', meaning monster, reflecting the scale of the unit.
  • A force of one teranewton is equivalent to the gravitational force acting on about 100 million kilograms.

📏 Real-World Examples

15 TN
Force exerted by a large rocket engine during lift-off
2 TN
Gravitational force acting on a large satellite
5 TN
Force on a dam during extreme flood conditions
10 TN
Impact force from a meteorite strike
3 TN
Force required to compress a large concrete block
8 TN
Force experienced by a particle in a collider

🔗 Related Units

Newton (1 TN = 10^12 N)Kilonewton (1 TN = 10^9 kN)Meganewton (1 TN = 10^6 MN)Gignewton (1 TN = 10^3 GN)Pound-force (1 TN ≈ 224809000 PF)Kilogram-force (1 TN ≈ 101971.6 kgf)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50