MetricConv logo

Dyne Converter

Convert Dyne to Newton and more • 33 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

Dynedyn

Source Unit

The dyne is a unit of force commonly used in the centimeter-gram-second (CGS) system of units. It is defined as the force necessary to accelerate a mass of one gram (g) at a rate of one centimeter per second squared (cm/s²). Mathematically, this relationship can be expressed as 1 dyn = 1 g·cm/s². The dyne is a relatively small unit of force, as it is used primarily in scientific contexts where precise measurements in small scales are vital, such as in physics, materials science, and engineering. The dyne remains relevant in certain specialized fields despite the widespread adoption of the SI unit of force, the newton, in most applications.

1 dyn = 1 g·cm/s²

Current Use

Currently, the dyne is primarily used in fields where the CGS system is still favored, such as in certain branches of physics, engineering, and materials science. Its applications are particularly prevalent in laboratories that focus on molecular dynamics, surface tension, and frictional studies, as the dyne allows for precise measurements of small forces. In biology, for instance, researchers may use the dyne to quantify forces acting at the cellular level, such as adhesion forces between cells or between cells and substrates. Furthermore, in engineering disciplines, particularly in fields dealing with micro-mechanical systems, the dyne provides a convenient scale for assessing forces in tiny components. Although the newton has largely supplanted it in many contexts, the dyne remains relevant in the specialized scientific communities that continue to rely on the CGS system.

Fun Fact

The dyne is significantly smaller than a newton, with 1 newton equaling 100,000 dynes.

NewtonN

Target Unit

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

F = m * a

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

Fun Fact

The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

Convert Dyne to Newton (dyn to N)

Convert Dynes (dyn) to Newtons (N). When digging through older scientific literature (pre-1960s) or working with specific material science properties, you will encounter the dyne. Converting it to Newtons ensures compatibility with all modern equations and standards.

Conversion Formula
N = dyn Ć· 100000

Divide Dynes by 100,000. For example, 500,000 dyn = 5 N.

IN

Dyne (dyn)

Definition

A unit of force in the CGS system, equal to 10⁻⁵ Newtons.

Origins & History

Proposed as part of the centimeter-gram-second system.

Current Use: Mostly obsolete except in specific physics niches.
OUT

Newton (N)

Definition

The SI derived unit of force.

Origins & History

Adopted by the CGPM in 1948.

Current Use: Used everywhere: gravity, engine thrust, weight.

šŸ“Conversion Formula

= Ɨ 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

šŸ’” Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.

dyn

Dyne

force • Non-SI

Definition

The dyne is a unit of force commonly used in the centimeter-gram-second (CGS) system of units. It is defined as the force necessary to accelerate a mass of one gram (g) at a rate of one centimeter per second squared (cm/s²). Mathematically, this relationship can be expressed as 1 dyn = 1 g·cm/s². The dyne is a relatively small unit of force, as it is used primarily in scientific contexts where precise measurements in small scales are vital, such as in physics, materials science, and engineering. The dyne remains relevant in certain specialized fields despite the widespread adoption of the SI unit of force, the newton, in most applications.

History & Origin

The dyne originated in the late 19th century as part of the CGS system, which was developed to provide a coherent set of units for scientific measurement. The CGS system emerged from the need for a practical measurement framework that could accommodate the growing complexity of physical phenomena in laboratory settings. The dyne was established during a time when the metric system was evolving, and scientists sought consistency in their measuring units, especially in fields like mechanics and electricity. The dyne fostered a more accessible understanding of force by relating it to the fundamental properties of mass and acceleration.

Etymology: The term 'dyne' is derived from the Greek word 'dynamis', meaning 'power' or 'force'.

1889: Standardization of the CGS sys...1960: Introduction of the SI system...

Current Use

Currently, the dyne is primarily used in fields where the CGS system is still favored, such as in certain branches of physics, engineering, and materials science. Its applications are particularly prevalent in laboratories that focus on molecular dynamics, surface tension, and frictional studies, as the dyne allows for precise measurements of small forces. In biology, for instance, researchers may use the dyne to quantify forces acting at the cellular level, such as adhesion forces between cells or between cells and substrates. Furthermore, in engineering disciplines, particularly in fields dealing with micro-mechanical systems, the dyne provides a convenient scale for assessing forces in tiny components. Although the newton has largely supplanted it in many contexts, the dyne remains relevant in the specialized scientific communities that continue to rely on the CGS system.

PhysicsMaterials ScienceBiologyMechanical Engineering

šŸ’” Fun Facts

  • •The dyne is significantly smaller than a newton, with 1 newton equaling 100,000 dynes.
  • •The dyne is still used in some scientific literature despite the widespread adoption of the SI system.
  • •A typical human finger can exert forces in the range of 50 to 100 dynes.

šŸ“ Real-World Examples

980 dyn
Force required to lift a 1-gram object vertically.
20 dyn
Force exerted by a typical household magnet.
5 dyn
Force needed to stretch a rubber band by 1 cm.
30 dyn
Force required to push a small toy car across a table.
0.1 dyn
Force experienced by a drop of water on a surface due to cohesion.
1 dyn
Force required to separate two pieces of scotch tape.

šŸ”— Related Units

Newton (1 newton = 100,000 dynes)Pound-force (1 pound-force = 444,822 dynes)Kilopond (1 kilopond = 9,806.65 dynes)Gram-force (1 gram-force = 980.665 dynes)Ounce-force (1 ounce-force = 278.013 dynes)Ton-force (1 ton-force = 889,643.1 dynes)
N

Newton

force • SI Unit

Definition

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

History & Origin

The newton was introduced as a unit of force in 1948 at the 9th General Conference on Weights and Measures (CGPM) as part of the International System of Units (SI). This was done to standardize measurements internationally and to honor Sir Isaac Newton's foundational contributions to physics. Newton's work laid the groundwork for classical mechanics, particularly his laws of motion which are crucial to understanding force and its applications in various fields. The adoption of the newton helped facilitate a universal language in scientific discourse, allowing for more accurate communication and collaboration across different disciplines.

Etymology: The term 'newton' is derived from the name of Sir Isaac Newton, the renowned English mathematician, physicist, and astronomer, who is widely recognized for formulating the laws of motion and universal gravitation.

1948: Introduction of the newton as ...

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

PhysicsEngineeringAutomotiveRoboticsAerospace

šŸ’” Fun Facts

  • •The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.
  • •A force of one newton is roughly the weight of a medium-sized apple.
  • •In space, where gravity is negligible, the newton can still be used to measure forces exerted by spacecraft engines.

šŸ“ Real-World Examples

9.81 N
The force required to lift a 1 kg object upwards at a constant speed
5 N
Force needed to accelerate a 5 kg cart from rest to 1 m/s²
20 N
Force exerted by a person pushing a shopping cart with a mass of 10 kg at 2 m/s²
147.15 N
Tension in a rope when lifting a 15 kg weight
100 N
The thrust produced by a small rocket engine generating 100 N of force
5000 N
Deceleration force applied to stop a 1000 kg car at a rate of 5 m/s²

šŸ”— Related Units

Pound-force (1 N = 0.225 lbf)Kilogram-force (1 N = 0.10197 kgf)Dyne (1 N = 100,000 dynes)Ton-force (1 N = 0.0002248 ton-force)Kilopond (1 N = 0.10197 kp)Joule per meter (1 N = 1 J/m)

Frequently Asked Questions

How do I convert to ?ā–¼

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?ā–¼

The formula is: = Ɨ 1. This conversion factor is based on international standards.

Is this to converter accurate?ā–¼

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?ā–¼

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50