Convert Kilogram to Poundal and more • 33 conversions
0
The kilogram, abbreviated as kg, is the SI unit of mass and is defined as being equal to the mass of the International Prototype of the Kilogram, which is a platinum-iridium cylinder kept at the International Bureau of Weights and Measures (BIPM) in Sèvres, France. This definition was established in 1889 and was the only base unit defined by a physical object. However, in 2019, the definition of the kilogram was redefined in terms of fundamental constants, specifically the Planck constant (h), which is set at exactly 6.62607015 × 10^-34 joule seconds. This redefinition allows for more precise measurements and ensures that the kilogram remains consistent and reproducible over time.
Today, the kilogram is widely used across the globe as the standard unit of mass in scientific, commercial, and everyday contexts. It is employed in various industries including manufacturing, agriculture, and healthcare. For instance, in the food industry, products are often sold by mass, measured in kilograms. In healthcare, medication dosages may also be prescribed based on the patient’s weight in kilograms. While most countries use the kilogram as part of the metric system, some countries, such as the United States, still use imperial units for certain applications, though the metric system is increasingly adopted in scientific and technical fields. The versatility of the kilogram makes it a vital unit in international trade and commerce.
The kilogram was the first unit of measurement to be defined by a physical artifact.
The poundal (symbol: pd) is a unit of force that is part of the foot-pound-second (FPS) system of measurements. It is defined as the force required to accelerate a one-pound mass by one foot per second squared. This unit is derived from the fundamental physical principles of mass, length, and time, making it a distinct measure of force that is primarily used in certain engineering and physics contexts. The poundal is less commonly used than the Newton, the SI unit of force, but remains significant in certain fields, particularly in the United States, where the FPS system is still in use. The poundal helps bridge the gap between traditional and modern measurements, providing a unique perspective on force in mechanical contexts.
The poundal is primarily utilized in specific engineering disciplines and contexts, particularly in the United States, where the foot-pound-second system is still relevant. It is often found in applications involving mechanical systems, structural engineering, and fluid dynamics. For example, engineers may use poundals to calculate forces acting on components in machinery or to assess stresses in materials. Despite the global shift towards the SI system and the widespread adoption of the Newton, the poundal remains in use among certain practitioners who prefer the FPS system for specific calculations, particularly in fields with historical ties to imperial units. Its usage is particularly notable in educational settings where traditional units are taught alongside modern metrics, allowing students to appreciate the historical context of measurement systems.
The poundal was introduced by Lord Kelvin, a prominent figure in thermodynamics.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
force • SI Unit
The kilogram, abbreviated as kg, is the SI unit of mass and is defined as being equal to the mass of the International Prototype of the Kilogram, which is a platinum-iridium cylinder kept at the International Bureau of Weights and Measures (BIPM) in Sèvres, France. This definition was established in 1889 and was the only base unit defined by a physical object. However, in 2019, the definition of the kilogram was redefined in terms of fundamental constants, specifically the Planck constant (h), which is set at exactly 6.62607015 × 10^-34 joule seconds. This redefinition allows for more precise measurements and ensures that the kilogram remains consistent and reproducible over time.
The kilogram originated in the late 18th century during the period of the French Revolution, as part of the efforts to standardize measurements across France and eventually the world. The need for a uniform measurement system became apparent in the wake of the Revolution, as varying local measures were causing confusion and inefficiency in trade and governance. Thus, the metric system was born, with the kilogram being one of its foundational units. The first kilogram was defined as the mass of one liter of water at its maximum density, which is approximately equal to 1,000 cubic centimeters. This practical approach to defining mass allowed for easier adoption across various sectors.
Etymology: The term 'kilogram' is derived from the Greek word 'kilo', meaning 'a thousand', and the French word 'gramme', which itself comes from the Late Latin 'gramma', meaning 'small weight'.
Today, the kilogram is widely used across the globe as the standard unit of mass in scientific, commercial, and everyday contexts. It is employed in various industries including manufacturing, agriculture, and healthcare. For instance, in the food industry, products are often sold by mass, measured in kilograms. In healthcare, medication dosages may also be prescribed based on the patient’s weight in kilograms. While most countries use the kilogram as part of the metric system, some countries, such as the United States, still use imperial units for certain applications, though the metric system is increasingly adopted in scientific and technical fields. The versatility of the kilogram makes it a vital unit in international trade and commerce.
force • Non-SI
The poundal (symbol: pd) is a unit of force that is part of the foot-pound-second (FPS) system of measurements. It is defined as the force required to accelerate a one-pound mass by one foot per second squared. This unit is derived from the fundamental physical principles of mass, length, and time, making it a distinct measure of force that is primarily used in certain engineering and physics contexts. The poundal is less commonly used than the Newton, the SI unit of force, but remains significant in certain fields, particularly in the United States, where the FPS system is still in use. The poundal helps bridge the gap between traditional and modern measurements, providing a unique perspective on force in mechanical contexts.
The poundal was introduced in the late 19th century as part of the effort to provide a coherent unit of force within the foot-pound-second system of units. It was proposed by the engineer and physicist William Thomson, Lord Kelvin, who sought to create a practical system that would replace the less consistent measurements in use at the time. The introduction of the poundal aimed to standardize measurements of force in engineering and physics, particularly in the United States, where the FPS system was prevalent. The poundal's creation was a response to the growing need for reliable and consistent units of measure among scientists and engineers.
Etymology: The term 'poundal' is a portmanteau comprising 'pound,' referring to the unit of weight, and 'al,' which signifies a diminutive or a related unit. This combination indicates that the poundal is a force derived from the pound, highlighting the relationship between mass and force in the FPS system.
The poundal is primarily utilized in specific engineering disciplines and contexts, particularly in the United States, where the foot-pound-second system is still relevant. It is often found in applications involving mechanical systems, structural engineering, and fluid dynamics. For example, engineers may use poundals to calculate forces acting on components in machinery or to assess stresses in materials. Despite the global shift towards the SI system and the widespread adoption of the Newton, the poundal remains in use among certain practitioners who prefer the FPS system for specific calculations, particularly in fields with historical ties to imperial units. Its usage is particularly notable in educational settings where traditional units are taught alongside modern metrics, allowing students to appreciate the historical context of measurement systems.
Explore more force conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.