Convert Tesla to Gamma and more • 51 conversions
0
The tesla (symbol: T) is the SI (International System of Units) derived unit of magnetic flux density, defined as one weber per square meter. It quantifies the strength of magnetic fields and is a crucial unit in electromagnetism. A magnetic flux density of one tesla corresponds to a magnetic force of one newton acting on a one-meter wire carrying a current of one ampere, oriented perpendicular to the magnetic field. This unit is vital for understanding and quantifying magnetic forces in various scientific and engineering applications.
Today, the tesla is widely used in various industries, particularly in electrical engineering, physics, and medical technology. It serves as a standard measurement for magnetic fields in research, manufacturing, and medical applications. For instance, MRI machines operate with magnetic field strengths typically ranging from 1.5 T to 3 T, showcasing the relevance of this unit in healthcare diagnostics.
Nikola Tesla was born during a lightning storm, which some believe led to his fascination with electricity and magnetism.
Gamma (symbol: γ) is a non-SI unit of magnetic flux density, representing one nanotesla (1 nT). It is defined as the magnetic field produced by a force of one newton acting on a charge of one coulomb moving at a velocity of one meter per second. The gamma unit is primarily used in geophysics and metrology, where it measures the strength of magnetic fields, particularly in the context of the Earth's magnetic field.
Gamma is widely utilized in geophysical surveys, environmental monitoring, and in the medical field, particularly in MRI technology. It serves as a standard measure of the Earth's magnetic field, aiding in navigation and geological exploration. Various instruments, such as magnetometers, are calibrated in gammas to ensure accurate readings in diverse applications.
One gamma is equal to one nanotesla, which is one billionth of a tesla, the SI unit of magnetic flux density.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
magnetic • SI Unit
The tesla (symbol: T) is the SI (International System of Units) derived unit of magnetic flux density, defined as one weber per square meter. It quantifies the strength of magnetic fields and is a crucial unit in electromagnetism. A magnetic flux density of one tesla corresponds to a magnetic force of one newton acting on a one-meter wire carrying a current of one ampere, oriented perpendicular to the magnetic field. This unit is vital for understanding and quantifying magnetic forces in various scientific and engineering applications.
The tesla was formally adopted as a unit of measurement in 1960 during the 11th General Conference on Weights and Measures (CGPM). It is named after the Serbian-American inventor and electrical engineer Nikola Tesla, who made numerous contributions to the development of alternating current (AC) electrical systems. Tesla's work laid the foundations for modern electromagnetism and electrical engineering, which significantly influenced technology and industry.
Etymology: The term 'tesla' is derived from the last name of Nikola Tesla, who is renowned for his pioneering work in electromagnetism and electrical engineering.
Today, the tesla is widely used in various industries, particularly in electrical engineering, physics, and medical technology. It serves as a standard measurement for magnetic fields in research, manufacturing, and medical applications. For instance, MRI machines operate with magnetic field strengths typically ranging from 1.5 T to 3 T, showcasing the relevance of this unit in healthcare diagnostics.
magnetic • Non-SI
Gamma (symbol: γ) is a non-SI unit of magnetic flux density, representing one nanotesla (1 nT). It is defined as the magnetic field produced by a force of one newton acting on a charge of one coulomb moving at a velocity of one meter per second. The gamma unit is primarily used in geophysics and metrology, where it measures the strength of magnetic fields, particularly in the context of the Earth's magnetic field.
The gamma unit was first introduced in the early 20th century as a means to measure weak magnetic fields encountered in various scientific studies, particularly in geophysics and electromagnetism. Its use became more prevalent with the advancements in magnetic measurement technologies, enabling researchers to quantify magnetic fields with greater accuracy.
Etymology: The term 'gamma' is derived from the Greek letter 'Γ' (gamma), which has been traditionally used in scientific contexts to denote various physical quantities.
Gamma is widely utilized in geophysical surveys, environmental monitoring, and in the medical field, particularly in MRI technology. It serves as a standard measure of the Earth's magnetic field, aiding in navigation and geological exploration. Various instruments, such as magnetometers, are calibrated in gammas to ensure accurate readings in diverse applications.
Explore more magnetic conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.