MetricConv logo
Home/Converters/Electric

Siemens Converter

Convert Siemens to Statmho and more • 68 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

SiemensS

Source Unit

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

S = A/V

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Fun Fact

The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.

Statmho

Target Unit

The statmho (℧) is a unit of electrical conductance in the centimeter-gram-second (CGS) system of units. It is defined as the conductance of a circuit where a potential difference of one statvolt produces a current of one statampere. This unit is derived from the cgs electrostatic system, where the statvolt is defined in terms of the forces between electric charges, and the statampere is derived based on the interaction of charges in a vacuum. The statmho is equivalent to approximately 0.1 siemens, providing a crucial link between different systems of measurement. Conductance describes how easily electric current can flow through a conductor, a fundamental property in electrical engineering and physics.

G = I/V

Current Use

While the statmho is not as commonly used today due to the widespread adoption of the SI units, it still finds application in certain fields, particularly in theoretical physics and electrical engineering. For example, in some areas of electrical research and advanced circuit design, engineers and physicists may revert to CGS units for convenience or historical context. Countries that continue to use CGS units include the United States in specific scientific research realms. Additionally, the statmho is relevant in academic settings where classical electromagnetism is taught, providing students with a historical perspective on electrical units. The unit also appears in literature discussing the historical context of electrical engineering.

Fun Fact

The statmho is not commonly used in modern engineering, making it a historical curiosity.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

S

Siemens

electricSI Unit

Definition

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

History & Origin

The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.

Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.

1867: Werner von Siemens founded the...1960: The siemens was officially ado...

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Electrical EngineeringTelecommunicationsElectronicsMaterials Science

💡 Fun Facts

  • The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
  • The siemens was introduced as an SI unit to standardize conductance measurements.
  • Conductance is the reciprocal of resistance, making siemens an essential unit in circuit analysis.

📏 Real-World Examples

0.005 S
Conductance of a copper wire
0.01 S
Conductance of a resistor
0.1 S
Conductance in a circuit
0.2 S
Conductance of a saline solution
0.05 S
Conductance of a semiconductor
0.03 S
Conductance in a capacitor

🔗 Related Units

Ohm (Resistance is the reciprocal of conductance; 1 S = 1/Ω.)Ampere (Conductance is defined as amperes per volt; 1 S = 1 A/V.)Volt (Voltage is essential in the conductance equation; G = I/V.)Mho (Mho is an older name for siemens, representing the same unit.)Siemens per Meter (Used for conductivity, indicating conductance per unit length.)Farad (Farads measure capacitance, which is related to conductance in AC circuits.)

Statmho

electricNon-SI

Definition

The statmho (℧) is a unit of electrical conductance in the centimeter-gram-second (CGS) system of units. It is defined as the conductance of a circuit where a potential difference of one statvolt produces a current of one statampere. This unit is derived from the cgs electrostatic system, where the statvolt is defined in terms of the forces between electric charges, and the statampere is derived based on the interaction of charges in a vacuum. The statmho is equivalent to approximately 0.1 siemens, providing a crucial link between different systems of measurement. Conductance describes how easily electric current can flow through a conductor, a fundamental property in electrical engineering and physics.

History & Origin

The origin of the statmho can be traced back to the development of the centimeter-gram-second (CGS) system in the 19th century, which was widely adopted for scientific calculations and measurements. This system was established to provide a coherent framework for measuring physical quantities, including electricity. The statmho was introduced as a way to express electrical conductance in a manner consistent with the units used to measure electric charge and potential. The statmho, along with other units in the CGS system, became pivotal in the field of electromagnetism, particularly in the analysis of electric circuits and properties of materials.

Etymology: The term 'statmho' is derived from 'stat' indicating the static electric system and 'mho', which is an inversion of 'ohm', the unit of electrical resistance. The prefix 'stat' in this context refers to the static form of electric charge interactions, as opposed to dynamic systems.

1959: Statmho officially recognized ...

Current Use

While the statmho is not as commonly used today due to the widespread adoption of the SI units, it still finds application in certain fields, particularly in theoretical physics and electrical engineering. For example, in some areas of electrical research and advanced circuit design, engineers and physicists may revert to CGS units for convenience or historical context. Countries that continue to use CGS units include the United States in specific scientific research realms. Additionally, the statmho is relevant in academic settings where classical electromagnetism is taught, providing students with a historical perspective on electrical units. The unit also appears in literature discussing the historical context of electrical engineering.

Electrical EngineeringPhysicsTelecommunications

💡 Fun Facts

  • The statmho is not commonly used in modern engineering, making it a historical curiosity.
  • The term 'mho' as the inverse of ohm was coined by the American engineer William Thomson in 1883.
  • The CGS system, including the statmho, was widely used until the adoption of the SI system in the 20th century.

📏 Real-World Examples

10 statmho
Conductance of a copper wire
5 statmho
Analyzing a circuit with known resistances
2 statmho
Evaluating the conductivity of a saltwater solution
0.5 statmho
Determining the conductance of a capacitor
3 statmho
Measuring the conductance of a semiconductor material
1.5 statmho
Testing the conductance of a battery electrolyte

🔗 Related Units

Siemens (1 statmho is approximately 0.1 siemens.)Ohm (Conductance is the inverse of resistance measured in ohms.)Statvolt (Statvolt is the unit of potential in CGS, related to statmho.)Statampere (Statampere is the unit of current in CGS, related to statmho.)Mho (Mho is another term for the unit of conductance, synonymous with statmho.)Kilosiemens (1 statmho is equal to 0.0001 kilosiemens.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50