Convert Siemens to Mho and more • 68 conversions
0
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
The mho, symbolized as ℧, is a unit of electrical conductance in the International System of Units (SI), defined as the reciprocal of resistance measured in ohms (Ω). One mho is equivalent to one siemens (S), which is the standardized SI unit for conductance. Conductance quantifies how easily electric current can flow through a conductor when a voltage is applied. The relationship between conductance and resistance is given by the formula: G = 1/R, where G is the conductance in mhos and R is the resistance in ohms. Since electrical conductance is a measure of the ability of an object to conduct electric current, the larger the mho value, the better the conductor. Mhos are commonly used in various electrical engineering applications to characterize the conductive properties of materials and components.
Today, the mho is utilized primarily in electrical engineering and related fields to describe the conductance of materials and components such as resistors, capacitors, and conductive pathways in circuits. It is particularly relevant in applications involving alternating current (AC) where impedance needs to be assessed. Various industries, including telecommunications, electronics, and power generation, rely on measurements of conductance in mhos for the design and analysis of circuits. Engineers may use this unit to evaluate the performance of electrical components, ensuring they meet required specifications for efficiency and safety. Notably, the mho is still prevalent in educational settings, particularly in physics and engineering courses that cover electrical concepts. In countries like the United States, the mho continues to be a recognized unit, while in many other nations, the siemens has become the dominant terminology. Nevertheless, both units are interchangeable, reflecting a shared understanding of electrical conductance across global engineering practices.
The mho is one of the few units that is spelled backward (ohm).
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
electric • SI Unit
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.
Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
electric • Non-SI
The mho, symbolized as ℧, is a unit of electrical conductance in the International System of Units (SI), defined as the reciprocal of resistance measured in ohms (Ω). One mho is equivalent to one siemens (S), which is the standardized SI unit for conductance. Conductance quantifies how easily electric current can flow through a conductor when a voltage is applied. The relationship between conductance and resistance is given by the formula: G = 1/R, where G is the conductance in mhos and R is the resistance in ohms. Since electrical conductance is a measure of the ability of an object to conduct electric current, the larger the mho value, the better the conductor. Mhos are commonly used in various electrical engineering applications to characterize the conductive properties of materials and components.
The term 'mho' originated in the late 19th century, emerging from the need to quantify electrical conductance, a concept that became more prominent with advancements in electrical engineering. As electrical systems proliferated, particularly in the development of telegraphy and later, electric power distribution, the measurement of how well a material could conduct electricity became essential. The reciprocal relationship between resistance and conductance was recognized, leading to the introduction of mho as a unit to denote conductance directly. The mho was particularly adopted in the United States and was used alongside other electrical units, facilitating clearer communication of conductance values in engineering.
Etymology: The word 'mho' is derived from 'ohm', the unit of electrical resistance, spelled backward.
Today, the mho is utilized primarily in electrical engineering and related fields to describe the conductance of materials and components such as resistors, capacitors, and conductive pathways in circuits. It is particularly relevant in applications involving alternating current (AC) where impedance needs to be assessed. Various industries, including telecommunications, electronics, and power generation, rely on measurements of conductance in mhos for the design and analysis of circuits. Engineers may use this unit to evaluate the performance of electrical components, ensuring they meet required specifications for efficiency and safety. Notably, the mho is still prevalent in educational settings, particularly in physics and engineering courses that cover electrical concepts. In countries like the United States, the mho continues to be a recognized unit, while in many other nations, the siemens has become the dominant terminology. Nevertheless, both units are interchangeable, reflecting a shared understanding of electrical conductance across global engineering practices.
Explore more electric conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.