MetricConv logo
Home/Converters/Electric

Siemens Converter

Convert Siemens to Conductancesiemens and more • 68 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

SiemensS

Source Unit

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

S = A/V

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Fun Fact

The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.

ConductanceS

Target Unit

Conductance, measured in siemens (S), quantifies the ease with which electric current flows through a conductor when a voltage is applied. It is the reciprocal of resistance, meaning a high conductance indicates low resistance. The unit siemens was introduced to honor the German engineer Ernst Werner von Siemens, who contributed significantly to the development of electrical engineering. Mathematically, conductance can be expressed as G = I/V, where G is conductance, I is the current in amperes, and V is the voltage in volts. This relationship highlights the direct proportionality of current flow to voltage when conductance is constant.

G = I / V

Current Use

Conductance is widely used in electrical engineering, physics, and materials science to describe the performance of conductors and circuits. It is a crucial parameter in the design of electrical systems, particularly in analyzing and optimizing the efficiency of power distribution networks and electronic devices. Additionally, conductance plays a significant role in the assessment of materials used in various industries, including telecommunications and automotive sectors.

Fun Fact

The siemens was previously known as mho, which is ohm spelled backward, reflecting the relationship between conductance and resistance.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

S

Siemens

electricSI Unit

Definition

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

History & Origin

The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.

Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.

1867: Werner von Siemens founded the...1960: The siemens was officially ado...

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Electrical EngineeringTelecommunicationsElectronicsMaterials Science

💡 Fun Facts

  • The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
  • The siemens was introduced as an SI unit to standardize conductance measurements.
  • Conductance is the reciprocal of resistance, making siemens an essential unit in circuit analysis.

📏 Real-World Examples

0.005 S
Conductance of a copper wire
0.01 S
Conductance of a resistor
0.1 S
Conductance in a circuit
0.2 S
Conductance of a saline solution
0.05 S
Conductance of a semiconductor
0.03 S
Conductance in a capacitor

🔗 Related Units

Ohm (Resistance is the reciprocal of conductance; 1 S = 1/Ω.)Ampere (Conductance is defined as amperes per volt; 1 S = 1 A/V.)Volt (Voltage is essential in the conductance equation; G = I/V.)Mho (Mho is an older name for siemens, representing the same unit.)Siemens per Meter (Used for conductivity, indicating conductance per unit length.)Farad (Farads measure capacitance, which is related to conductance in AC circuits.)
S

Conductance

electricNon-SI

Definition

Conductance, measured in siemens (S), quantifies the ease with which electric current flows through a conductor when a voltage is applied. It is the reciprocal of resistance, meaning a high conductance indicates low resistance. The unit siemens was introduced to honor the German engineer Ernst Werner von Siemens, who contributed significantly to the development of electrical engineering. Mathematically, conductance can be expressed as G = I/V, where G is conductance, I is the current in amperes, and V is the voltage in volts. This relationship highlights the direct proportionality of current flow to voltage when conductance is constant.

History & Origin

The concept of conductance emerged in the 19th century as electrical engineering became more prominent. The unit siemens was adopted in 1881 during the International Electrical Congress held in Paris. The recognition of conductance as a vital electrical parameter facilitated advancements in circuit theory and electronic devices.

Etymology: The term 'siemens' is derived from the name of Ernst Werner von Siemens, a significant figure in electrical engineering and co-founder of the Siemens company, which played a crucial role in the development of telegraphy and electrical engineering.

1959: The siemens is officially reco...

Current Use

Conductance is widely used in electrical engineering, physics, and materials science to describe the performance of conductors and circuits. It is a crucial parameter in the design of electrical systems, particularly in analyzing and optimizing the efficiency of power distribution networks and electronic devices. Additionally, conductance plays a significant role in the assessment of materials used in various industries, including telecommunications and automotive sectors.

ElectronicsTelecommunicationsEnergyAutomotive

💡 Fun Facts

  • The siemens was previously known as mho, which is ohm spelled backward, reflecting the relationship between conductance and resistance.
  • Conductance can vary significantly with temperature; for many materials, increased temperature leads to higher conductance.
  • The siemens is one of the few SI units named after a person, highlighting the impact of individuals in the field of science and engineering.

📏 Real-World Examples

0.5 S
A copper wire with a current of 2 A and a voltage of 4 V
0.25 S
A light bulb with 3 A current at 12 V
0.1 S
An aluminum conductor carrying 1 A at 10 V
0.1 S
A silicon semiconductor with 0.5 A at 5 V
0.04 S
A resistor with a current of 0.2 A and a voltage of 5 V

🔗 Related Units

Resistance (Conductance is the reciprocal of resistance (G = 1/R).)Conductivity (Conductivity is the measure of a material's ability to conduct electric current, related to conductance by G = σ * A / L.)Voltage (Voltage (V) is used in the formula G = I/V to calculate conductance.)Current (Current (I) is the other variable in the conductance equation G = I/V.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50