Convert Siemens to Conductancesiemens and more • 68 conversions
0
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
Conductance, measured in siemens (S), quantifies the ease with which electric current flows through a conductor when a voltage is applied. It is the reciprocal of resistance, meaning a high conductance indicates low resistance. The unit siemens was introduced to honor the German engineer Ernst Werner von Siemens, who contributed significantly to the development of electrical engineering. Mathematically, conductance can be expressed as G = I/V, where G is conductance, I is the current in amperes, and V is the voltage in volts. This relationship highlights the direct proportionality of current flow to voltage when conductance is constant.
Conductance is widely used in electrical engineering, physics, and materials science to describe the performance of conductors and circuits. It is a crucial parameter in the design of electrical systems, particularly in analyzing and optimizing the efficiency of power distribution networks and electronic devices. Additionally, conductance plays a significant role in the assessment of materials used in various industries, including telecommunications and automotive sectors.
The siemens was previously known as mho, which is ohm spelled backward, reflecting the relationship between conductance and resistance.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
electric • SI Unit
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.
Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
electric • Non-SI
Conductance, measured in siemens (S), quantifies the ease with which electric current flows through a conductor when a voltage is applied. It is the reciprocal of resistance, meaning a high conductance indicates low resistance. The unit siemens was introduced to honor the German engineer Ernst Werner von Siemens, who contributed significantly to the development of electrical engineering. Mathematically, conductance can be expressed as G = I/V, where G is conductance, I is the current in amperes, and V is the voltage in volts. This relationship highlights the direct proportionality of current flow to voltage when conductance is constant.
The concept of conductance emerged in the 19th century as electrical engineering became more prominent. The unit siemens was adopted in 1881 during the International Electrical Congress held in Paris. The recognition of conductance as a vital electrical parameter facilitated advancements in circuit theory and electronic devices.
Etymology: The term 'siemens' is derived from the name of Ernst Werner von Siemens, a significant figure in electrical engineering and co-founder of the Siemens company, which played a crucial role in the development of telegraphy and electrical engineering.
Conductance is widely used in electrical engineering, physics, and materials science to describe the performance of conductors and circuits. It is a crucial parameter in the design of electrical systems, particularly in analyzing and optimizing the efficiency of power distribution networks and electronic devices. Additionally, conductance plays a significant role in the assessment of materials used in various industries, including telecommunications and automotive sectors.
Explore more electric conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.