Convert Siemens to Abmho and more • 68 conversions
0
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
The abmho (symbol: abΩ) is a unit of electrical conductance in the centimeter-gram-second (CGS) system of units. It measures how easily electric current flows through a material when a voltage is applied. One abmho is defined as the conductance that allows one ampere of current to flow when one volt is applied across the conductor. The abmho is equivalent to the reciprocal of the abohm, which is a unit of electrical resistance. This relationship is crucial in understanding the behavior of electrical circuits and materials. Given its roots in the CGS system, the abmho is less commonly used today compared to SI units, but it remains relevant in specific contexts related to historical electrical engineering practices and certain scientific calculations.
Although the abmho is not widely used in modern applications, it holds historical significance in the study and understanding of electrical engineering principles. It is primarily of interest in academic contexts, particularly when studying the history of electricity and electrical units. In some specialized fields, such as physics and electrical engineering, the abmho may still be used in theoretical discussions or when converting historical data into contemporary units. Countries that utilize the abmho in historical contexts include the United States and the United Kingdom, particularly in academic institutions that focus on the foundations of electrical engineering. In these settings, the abmho serves as a reminder of the evolution of electrical measurement standards and the development of the field itself.
The abmho is rarely used today, but it was once a standard in electrical engineering education.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
electric • SI Unit
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.
Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
electric • Non-SI
The abmho (symbol: abΩ) is a unit of electrical conductance in the centimeter-gram-second (CGS) system of units. It measures how easily electric current flows through a material when a voltage is applied. One abmho is defined as the conductance that allows one ampere of current to flow when one volt is applied across the conductor. The abmho is equivalent to the reciprocal of the abohm, which is a unit of electrical resistance. This relationship is crucial in understanding the behavior of electrical circuits and materials. Given its roots in the CGS system, the abmho is less commonly used today compared to SI units, but it remains relevant in specific contexts related to historical electrical engineering practices and certain scientific calculations.
The abmho was introduced in the late 19th century as part of the CGS system. This was a time when electrical engineering was emerging as a distinct field, and various units were being developed to measure electrical properties. The term 'abmho' was derived from 'mho,' which itself is the reverse spelling of 'ohm,' the unit of resistance. The abmho was devised to facilitate calculations in electrical engineering, particularly in telegraphy and early telecommunication technologies. Its introduction was significant during a period marked by rapid advancements in electrical theory and practice.
Etymology: The name 'abmho' comes from 'ab' which indicates the CGS system, and 'mho,' a term coined in the 1880s to represent conductance, being the reciprocal of resistance.
Although the abmho is not widely used in modern applications, it holds historical significance in the study and understanding of electrical engineering principles. It is primarily of interest in academic contexts, particularly when studying the history of electricity and electrical units. In some specialized fields, such as physics and electrical engineering, the abmho may still be used in theoretical discussions or when converting historical data into contemporary units. Countries that utilize the abmho in historical contexts include the United States and the United Kingdom, particularly in academic institutions that focus on the foundations of electrical engineering. In these settings, the abmho serves as a reminder of the evolution of electrical measurement standards and the development of the field itself.
Explore more electric conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.