Convert Radian Second to Revolution Second and more • 12 conversions
0
The radian second (rad·s) is a unit of angular velocity that quantifies the rate of rotation in terms of the angle rotated in radians per unit time, specifically seconds. One radian corresponds to the angle subtended at the center of a circle by an arc length equal to the radius of that circle. Thus, when measuring angular displacement, the radian second indicates how much of a full rotation (2π radians) occurs in one second. In mathematical terms, if θ is the angle in radians and t is the time in seconds, then angular velocity ω is represented as ω = θ/t, where ω is in rad·s.
The radian second is widely used in various fields such as physics, engineering, and robotics to describe the rotational motion of objects. It is essential in analyzing systems involving gears, motors, and celestial mechanics. The unit is integral in the design of control systems, where the control of angular velocity is crucial for performance. In addition, it is commonly used in simulations and modeling of dynamic systems in both academic and industrial settings.
The concept of a radian is inherently tied to the geometry of a circle, making it a natural fit for circular motion analysis.
The revolution second (rev/s) is a unit of angular velocity that quantifies the rate of rotation in terms of complete revolutions occurring in one second. Specifically, one revolution second indicates that an object completes one full rotation around a specified axis in a time span of one second. This unit is particularly useful in fields such as physics and engineering, where rotational dynamics is analyzed. It can be converted to other angular velocity units such as radians per second or degrees per second through multiplication by appropriate conversion factors.
Today, the revolution second is widely used in various industries, particularly in mechanical engineering, robotics, and aerospace. In engineering applications, it provides a straightforward way to express the speed of rotating machinery, such as motors and turbines. In robotics, this unit helps in programming and controlling the speed of robotic arms and wheels. Additionally, in aerospace, the revolution second is crucial for calculations involving satellite rotations and orbital mechanics.
The Earth's rotation speed at the equator is approximately 0.000694 rev/s.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
velocity • Non-SI
The radian second (rad·s) is a unit of angular velocity that quantifies the rate of rotation in terms of the angle rotated in radians per unit time, specifically seconds. One radian corresponds to the angle subtended at the center of a circle by an arc length equal to the radius of that circle. Thus, when measuring angular displacement, the radian second indicates how much of a full rotation (2π radians) occurs in one second. In mathematical terms, if θ is the angle in radians and t is the time in seconds, then angular velocity ω is represented as ω = θ/t, where ω is in rad·s.
The concept of angular measurement has existed since ancient times, but the radian was formally defined in the 18th century by mathematicians such as Leonhard Euler. The radian as a unit became widely accepted for describing angular measurements due to its mathematical convenience, notably in calculus and trigonometry. The use of radian seconds emerged as a natural extension in physics and engineering to quantify angular velocities, particularly in rotational dynamics and wave mechanics.
Etymology: The term 'radian' is derived from the Latin word 'radius,' meaning 'ray' or 'spoke,' reflecting the relationship between the radius of a circle and the arc length it subtends.
The radian second is widely used in various fields such as physics, engineering, and robotics to describe the rotational motion of objects. It is essential in analyzing systems involving gears, motors, and celestial mechanics. The unit is integral in the design of control systems, where the control of angular velocity is crucial for performance. In addition, it is commonly used in simulations and modeling of dynamic systems in both academic and industrial settings.
velocity • Non-SI
The revolution second (rev/s) is a unit of angular velocity that quantifies the rate of rotation in terms of complete revolutions occurring in one second. Specifically, one revolution second indicates that an object completes one full rotation around a specified axis in a time span of one second. This unit is particularly useful in fields such as physics and engineering, where rotational dynamics is analyzed. It can be converted to other angular velocity units such as radians per second or degrees per second through multiplication by appropriate conversion factors.
The concept of angular velocity dates back to classical mechanics, where the study of motion was essential for understanding planetary movements and machinery. The revolution second emerged as a practical unit in engineering and physics to simplify the expression of rotational speeds. Historically, the need for such measurements became more significant during the Industrial Revolution when machinery began to dominate production processes, necessitating precise measurements of rotational speeds.
Etymology: The term 'revolution' originates from the Latin 'revolutio', which means 'a turning over' or 'a turning around', reflecting the motion involved in one complete turn. The 'second' in revolution second denotes a time period of one second, emphasizing the relationship between time and rotational movement.
Today, the revolution second is widely used in various industries, particularly in mechanical engineering, robotics, and aerospace. In engineering applications, it provides a straightforward way to express the speed of rotating machinery, such as motors and turbines. In robotics, this unit helps in programming and controlling the speed of robotic arms and wheels. Additionally, in aerospace, the revolution second is crucial for calculations involving satellite rotations and orbital mechanics.
Explore more velocity conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.