MetricConv logo

Millicoulomb Converter

Convert Millicoulomb to Coulomb and more • 18 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

MillicoulombmC

Source Unit

A millicoulomb (mC) is a unit of electric charge that is equal to one-thousandth (1/1000) of a coulomb. The coulomb is defined as the amount of charge transferred by a constant current of one ampere in one second. The millicoulomb is a commonly used unit in various electrical applications, reflecting smaller quantities of charge suitable for practical uses in electronics and electrochemistry. To illustrate, 1 mC represents the charge that would flow through a conductor carrying a current of 1 milliampere (mA) for 1 second. This unit is particularly useful in contexts where precise measurements of small charges are required, such as battery technology, capacitor specifications, and electrostatic applications.

1 mC = 10^-3 C

Current Use

Today, the millicoulomb is extensively used in various fields, particularly in electronics, where precise measurements of charge are essential. In battery technology, for instance, the charge capacity of batteries can be expressed in millicoulombs to indicate the amount of charge they can store and deliver. In electrochemistry, the millicoulomb is useful for quantifying charge transfer during redox reactions and analyzing the performance of electrodes in galvanic cells. Instrumentation and measurement devices, such as multimeters and oscilloscopes, often display charge values in millicoulombs when dealing with small currents or charge accumulations. In telecommunications, millicoulombs can be relevant in assessing the charge used by various components in communication devices. Overall, the millicoulomb's application spans across industries, including automotive, telecommunications, consumer electronics, and renewable energy systems.

Fun Fact

The millicoulomb is significant in electrochemistry, where the precise control of charge is crucial for reactions.

CoulombC

Target Unit

The coulomb (symbol: C) is the SI unit of electric charge, representing the quantity of electricity transported in one second by a constant current of one ampere. In terms of fundamental physical constants, one coulomb is equivalent to approximately 6.242 × 10^18 elementary charges, which is the charge of an electron. The coulomb is integral to the understanding of electromagnetic interactions, as it quantitatively describes the amount of electric charge in a system. This makes the coulomb pivotal in both theoretical and applied physics, particularly in contexts involving capacitors, electric fields, and electrochemical reactions. Additionally, the coulomb can also be expressed in terms of other base SI units, such as in the formula C = A·s, where A is amperes and s is seconds.

C = A·s

Current Use

Today, the coulomb is widely used in various fields, particularly in electrical engineering and physics. It is essential in calculations involving electric circuits, where current (in amperes) and voltage (in volts) interact to produce power, described as watts. In the automotive industry, the coulomb helps quantify the charge stored in batteries, which is crucial for the development of electric vehicles. Additionally, the coulomb is utilized in telecommunications for understanding signal transmission, where the flow of charge impacts the quality and speed of data transfer. Countries such as the United States, Japan, and members of the European Union employ the coulomb in both educational and professional settings, ensuring standardization in electrical measurements. The coulomb is also vital in electrochemistry, where it helps measure the quantity of electric charge required for reactions in batteries and fuel cells, thus playing a significant role in the transition to renewable energy sources.

Fun Fact

The coulomb is equivalent to the charge of approximately 6.242 × 10^18 electrons.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

mC

Millicoulomb

chargeNon-SI

Definition

A millicoulomb (mC) is a unit of electric charge that is equal to one-thousandth (1/1000) of a coulomb. The coulomb is defined as the amount of charge transferred by a constant current of one ampere in one second. The millicoulomb is a commonly used unit in various electrical applications, reflecting smaller quantities of charge suitable for practical uses in electronics and electrochemistry. To illustrate, 1 mC represents the charge that would flow through a conductor carrying a current of 1 milliampere (mA) for 1 second. This unit is particularly useful in contexts where precise measurements of small charges are required, such as battery technology, capacitor specifications, and electrostatic applications.

History & Origin

The concept of electric charge was first introduced in the 18th century, with the pioneering work of scientists like Charles-Augustin de Coulomb. He formulated Coulomb's law, which quantitatively describes the electrostatic interaction between charged particles. The coulomb as a unit was later adopted in the International System of Units (SI) in 1881, named in his honor. The millicoulomb emerged as a practical subunit to facilitate the measurement of smaller charges in modern electrical engineering, electronics, and research, where dealing with micro and milli prefixes is common in expressing quantities.

Etymology: The term 'millicoulomb' is derived from 'milli-', a prefix in the metric system denoting one-thousandth, combined with 'coulomb', named after French physicist Charles-Augustin de Coulomb.

1881: The coulomb was officially ado...1959: The millicoulomb became recogn...

Current Use

Today, the millicoulomb is extensively used in various fields, particularly in electronics, where precise measurements of charge are essential. In battery technology, for instance, the charge capacity of batteries can be expressed in millicoulombs to indicate the amount of charge they can store and deliver. In electrochemistry, the millicoulomb is useful for quantifying charge transfer during redox reactions and analyzing the performance of electrodes in galvanic cells. Instrumentation and measurement devices, such as multimeters and oscilloscopes, often display charge values in millicoulombs when dealing with small currents or charge accumulations. In telecommunications, millicoulombs can be relevant in assessing the charge used by various components in communication devices. Overall, the millicoulomb's application spans across industries, including automotive, telecommunications, consumer electronics, and renewable energy systems.

ElectronicsTelecommunicationsAutomotiveEnergy StorageElectrochemistry

💡 Fun Facts

  • The millicoulomb is significant in electrochemistry, where the precise control of charge is crucial for reactions.
  • A single coulomb is equivalent to approximately 6.242 x 10^18 elementary charges, highlighting the tiny scale of the millicoulomb.
  • The term 'coulomb' was first introduced by the French physicist André-Marie Ampère in 1820.

📏 Real-World Examples

1000 mC
Charging a 1000mAh battery for 1 hour
5 mC
Discharging a capacitor with a stored charge of 5mF at 200mA for 25 seconds
200 mC
A mobile phone consuming 200mC during a call
15000 mC
Electric vehicle battery capacity measured in 15000mC
50 mC
A sensor outputting a charge of 50mC in response to a stimulus
1 mC
A circuit receiving 1mC of charge per second

🔗 Related Units

Coulomb (1 mC = 10^-3 C)Microcoulomb (1 mC = 1000 µC)Nanocoulomb (1 mC = 10^6 nC)Ampere (1 C/s = 1000 mC/s)Volt (1 V = 1 J/C; charge can be expressed in mC when calculating energy.)Farad (1 F = 1 C/V; capacitance can relate to mC.)
C

Coulomb

chargeSI Unit

Definition

The coulomb (symbol: C) is the SI unit of electric charge, representing the quantity of electricity transported in one second by a constant current of one ampere. In terms of fundamental physical constants, one coulomb is equivalent to approximately 6.242 × 10^18 elementary charges, which is the charge of an electron. The coulomb is integral to the understanding of electromagnetic interactions, as it quantitatively describes the amount of electric charge in a system. This makes the coulomb pivotal in both theoretical and applied physics, particularly in contexts involving capacitors, electric fields, and electrochemical reactions. Additionally, the coulomb can also be expressed in terms of other base SI units, such as in the formula C = A·s, where A is amperes and s is seconds.

History & Origin

The coulomb is named after Charles-Augustin de Coulomb, a French physicist who is best known for his formulation of Coulomb's law in the 18th century. This law describes the electrostatic force between charged particles, laying the groundwork for electrostatics. The formal adoption of the unit occurred in the late 19th century as the field of electromagnetism developed. The International Electrotechnical Commission (IEC) officially adopted the coulomb as a standard unit in 1908, recognizing its importance in electrical engineering and physics. This historical context underscores the evolution of electrical measurement from qualitative observations to a standardized quantification of electric charge.

Etymology: The term 'coulomb' derives from the name of Charles-Augustin de Coulomb, reflecting his significant contributions to the study of electrostatics.

1785: Charles-Augustin de Coulomb fo...1908: Coulomb officially adopted as ...

Current Use

Today, the coulomb is widely used in various fields, particularly in electrical engineering and physics. It is essential in calculations involving electric circuits, where current (in amperes) and voltage (in volts) interact to produce power, described as watts. In the automotive industry, the coulomb helps quantify the charge stored in batteries, which is crucial for the development of electric vehicles. Additionally, the coulomb is utilized in telecommunications for understanding signal transmission, where the flow of charge impacts the quality and speed of data transfer. Countries such as the United States, Japan, and members of the European Union employ the coulomb in both educational and professional settings, ensuring standardization in electrical measurements. The coulomb is also vital in electrochemistry, where it helps measure the quantity of electric charge required for reactions in batteries and fuel cells, thus playing a significant role in the transition to renewable energy sources.

Electrical EngineeringTelecommunicationsAutomotiveElectrochemistryRenewable Energy

💡 Fun Facts

  • The coulomb is equivalent to the charge of approximately 6.242 × 10^18 electrons.
  • Coulomb's law is analogous to Newton's law of gravitation, both describing inverse-square relationships.
  • The coulomb is used in various applications, including the design of capacitors and batteries.

📏 Real-World Examples

2000 C
Charge of an AA battery
0.01 C
Charge in a capacitor
5 C
Electric current in a circuit
0.5 C
Charge transfer in electroplating
40000 C
Electric vehicle battery
20 C
Charge in a lightning bolt

🔗 Related Units

Ampere (1 coulomb per second is equivalent to 1 ampere.)Faraday (1 faraday is equivalent to approximately 96485 coulombs.)Volt (1 volt is defined as 1 joule per coulomb.)Joule (1 joule is equal to 1 coulomb times 1 volt.)Microcoulomb (1 microcoulomb is 1 × 10^-6 coulombs.)Nanocoulomb (1 nanocoulomb is 1 × 10^-9 coulombs.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50