MetricConv logo
Home/Converters/Inductance

Henry Converter

Convert Henry to Microhenry and more • 22 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

HenryH

Source Unit

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

1 H = 1 V·s/A

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

Fun Fact

The henry is one of the seven base SI units, underpinning many areas of electrical engineering.

MicrohenryµH

Target Unit

A microhenry (µH) is a unit of inductance in the International System of Units (SI), equivalent to one-millionth of a henry (10^-6 H). Inductance is the property of an electrical conductor by which a change in current in the conductor creates an electromotive force (emf) in both the conductor itself and in any nearby conductors. This phenomenon is a fundamental principle in electromagnetism and is crucial in the functioning of inductors and transformers. The microhenry is commonly used in the design and analysis of electronic circuits, where inductance values can be very low, especially in high-frequency applications. The microhenry allows for precise measurements and component specifications in various electrical and electronic engineering applications.

L = V / (dI/dt)

Current Use

Today, the microhenry is widely used across various industries, particularly in electronics and telecommunications. It serves critical roles in the design and function of inductors, transformers, and RF circuits. In telecommunications, microhenries are essential for constructing filters and tuning circuits that operate at high frequencies. The automotive industry uses microhenries in electronic control units (ECUs) for managing fuel efficiency and emissions. Countries like the United States, Japan, Germany, and South Korea, which are at the forefront of electronics manufacturing, frequently utilize microhenries in their designs. Additionally, microhenries are integral in the development of medical devices, such as MRI machines, where precise inductance is necessary for proper functionality. Their versatility allows them to be found in everything from consumer electronics to sophisticated aerospace technologies.

Fun Fact

The microhenry is one of the smallest standard units of inductance commonly used in electronics.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

H

Henry

inductanceSI Unit

Definition

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

History & Origin

The unit 'henry' was officially adopted in 1861 during the establishment of the International System of Units (SI). It was named in honor of Joseph Henry, an American scientist who made significant contributions to the understanding of electromagnetism and induction. Henry's pioneering work laid the foundations for many modern electrical technologies and his discoveries regarding self-induction and mutual induction were crucial in the development of the field. His experiments demonstrated how a change in current could induce a magnetic field, which formed the basis for the concept of inductance that the henry quantifies.

Etymology: The term 'henry' is derived from the name of Joseph Henry, reflecting the honor bestowed upon him for his groundbreaking contributions to electromagnetism.

1861: The henry is named after Josep...1960: The henry is officially includ...

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

ElectronicsElectrical EngineeringTelecommunicationsAutomotiveEnergyAerospace

💡 Fun Facts

  • The henry is one of the seven base SI units, underpinning many areas of electrical engineering.
  • Joseph Henry discovered self-induction independently of Michael Faraday, demonstrating his key role in electromagnetism.
  • Inductance can be affected by the physical arrangement of coils, such as their number of turns and proximity to magnetic materials.

📏 Real-World Examples

10 H
An inductor in a power supply circuit that has a rated inductance of 10 H.
2 H
A transformer used in a power transmission system with a primary inductance of 2 H.
0.5 H
An electric motor with an inductance of 0.5 H affecting its performance.
0.000025 H
A radio transmitter utilizing a tuned circuit with inductance of 25 μH.
1 H
A wireless charging pad with inductors rated at 1 H to optimize energy transfer.
15 H
An electric vehicle's inductor rated at 15 H used in regenerative braking systems.

🔗 Related Units

Volt (Voltage induced per change of current.)Farad (Capacitance, related through the impedance in AC circuits.)Ohm (Resistance, affecting the current induced in inductive circuits.)Tesla (Magnetic flux density, influencing inductance.)Ampere (Current, fundamental to the definition of inductance.)Henry (Self-inductance, the unit itself.)
µH

Microhenry

inductanceNon-SI

Definition

A microhenry (µH) is a unit of inductance in the International System of Units (SI), equivalent to one-millionth of a henry (10^-6 H). Inductance is the property of an electrical conductor by which a change in current in the conductor creates an electromotive force (emf) in both the conductor itself and in any nearby conductors. This phenomenon is a fundamental principle in electromagnetism and is crucial in the functioning of inductors and transformers. The microhenry is commonly used in the design and analysis of electronic circuits, where inductance values can be very low, especially in high-frequency applications. The microhenry allows for precise measurements and component specifications in various electrical and electronic engineering applications.

History & Origin

The concept of inductance was first introduced by Michael Faraday in the early 19th century when he discovered electromagnetic induction. The henry was named after American scientist Joseph Henry, who independently discovered self-induction. The subdivision of the henry into smaller units like the microhenry became necessary as electrical engineering evolved, particularly with the advent of radio technology and high-frequency circuits in the early 20th century. The microhenry allows engineers to work with smaller inductance values suitable for modern electronic applications, thus facilitating advancements in compact circuit design.

Etymology: The term 'micro' comes from the Greek word 'mikros,' meaning small. The 'henry' is named after Joseph Henry, an American scientist known for his work in electromagnetism.

1959: The microhenry was defined as ...

Current Use

Today, the microhenry is widely used across various industries, particularly in electronics and telecommunications. It serves critical roles in the design and function of inductors, transformers, and RF circuits. In telecommunications, microhenries are essential for constructing filters and tuning circuits that operate at high frequencies. The automotive industry uses microhenries in electronic control units (ECUs) for managing fuel efficiency and emissions. Countries like the United States, Japan, Germany, and South Korea, which are at the forefront of electronics manufacturing, frequently utilize microhenries in their designs. Additionally, microhenries are integral in the development of medical devices, such as MRI machines, where precise inductance is necessary for proper functionality. Their versatility allows them to be found in everything from consumer electronics to sophisticated aerospace technologies.

ElectronicsTelecommunicationsAutomotiveAerospaceMedical Devices

💡 Fun Facts

  • The microhenry is one of the smallest standard units of inductance commonly used in electronics.
  • Inductance was discovered independently by both Michael Faraday and Joseph Henry, though they worked in different contexts.
  • The microhenry unit is often used in RF applications, where precision inductance values are crucial.

📏 Real-World Examples

10 µH
Inductor in a radio circuit
47 µH
Filter circuit for a power supply
22 µH
Inductor in a switching regulator
100 µH
Transformers in audio equipment
1.5 µH
RF circuit in a mobile phone
33 µH
Inductor in a car ECU

🔗 Related Units

Henry (1 henry = 1,000,000 microhenries)Millihenry (1 millihenry = 1,000 microhenries)Nanohenry (1 microhenry = 1,000 nanohenries)Picohenry (1 microhenry = 1,000,000 picohenries)Farad (Inductance and capacitance are related in AC circuits.)Ohm (Inductance affects the impedance in circuits, related to ohms.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50