MetricConv logo
Home/Converters/Inductance

Henry Converter

Convert Henry to Esu Of Inductance and more • 22 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

HenryH

Source Unit

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

1 H = 1 VĀ·s/A

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

Fun Fact

The henry is one of the seven base SI units, underpinning many areas of electrical engineering.

Electromagnetic System Unit of Inductanceesu

Target Unit

The electromagnetic system unit of inductance (esu) is a derived unit in the centimeter-gram-second (CGS) system of electromagnetic units. It quantifies the inductance of a circuit, which is the property that allows it to store energy in a magnetic field when electric current flows through it. One esu of inductance is defined as the inductance that induces an electromotive force of one electrostatic unit (esu) when the current changes at the rate of one esu per second. This unit is particularly significant in the context of electromagnetic theory and applications where the interaction of electric and magnetic fields is crucial. The esu is foundational in the study of electromagnetism, serving as a bridge between electricity and magnetism, capturing the essence of inductive behavior in circuits.

L = (V / di/dt)

Current Use

The esu of inductance is primarily used in theoretical physics and electromagnetic studies, particularly in the context of the CGS system. While the SI unit of inductance, the henry (H), is more commonly used in practical applications, the esu remains relevant in specific academic and scientific discussions. In fields such as plasma physics, astrophysics, and certain branches of electrical engineering, the esu serves as a reference point for understanding inductive behavior. Countries utilizing the esu include those engaged in advanced physics research, particularly within academic institutions that focus on classical electromagnetism. Its applications can be seen in simulations and theoretical models where traditional CGS units are preferred for historical continuity and pedagogical clarity.

Fun Fact

The esu of inductance is rarely encountered in everyday applications but remains pivotal in theoretical discussions.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

šŸ“Conversion Formula

= Ɨ 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

šŸ’” Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.

H

Henry

inductance • SI Unit

Definition

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

History & Origin

The unit 'henry' was officially adopted in 1861 during the establishment of the International System of Units (SI). It was named in honor of Joseph Henry, an American scientist who made significant contributions to the understanding of electromagnetism and induction. Henry's pioneering work laid the foundations for many modern electrical technologies and his discoveries regarding self-induction and mutual induction were crucial in the development of the field. His experiments demonstrated how a change in current could induce a magnetic field, which formed the basis for the concept of inductance that the henry quantifies.

Etymology: The term 'henry' is derived from the name of Joseph Henry, reflecting the honor bestowed upon him for his groundbreaking contributions to electromagnetism.

1861: The henry is named after Josep...1960: The henry is officially includ...

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

ElectronicsElectrical EngineeringTelecommunicationsAutomotiveEnergyAerospace

šŸ’” Fun Facts

  • •The henry is one of the seven base SI units, underpinning many areas of electrical engineering.
  • •Joseph Henry discovered self-induction independently of Michael Faraday, demonstrating his key role in electromagnetism.
  • •Inductance can be affected by the physical arrangement of coils, such as their number of turns and proximity to magnetic materials.

šŸ“ Real-World Examples

10 H
An inductor in a power supply circuit that has a rated inductance of 10 H.
2 H
A transformer used in a power transmission system with a primary inductance of 2 H.
0.5 H
An electric motor with an inductance of 0.5 H affecting its performance.
0.000025 H
A radio transmitter utilizing a tuned circuit with inductance of 25 μH.
1 H
A wireless charging pad with inductors rated at 1 H to optimize energy transfer.
15 H
An electric vehicle's inductor rated at 15 H used in regenerative braking systems.

šŸ”— Related Units

Volt (Voltage induced per change of current.)Farad (Capacitance, related through the impedance in AC circuits.)Ohm (Resistance, affecting the current induced in inductive circuits.)Tesla (Magnetic flux density, influencing inductance.)Ampere (Current, fundamental to the definition of inductance.)Henry (Self-inductance, the unit itself.)
esu

Electromagnetic System Unit of Inductance

inductance • Non-SI

Definition

The electromagnetic system unit of inductance (esu) is a derived unit in the centimeter-gram-second (CGS) system of electromagnetic units. It quantifies the inductance of a circuit, which is the property that allows it to store energy in a magnetic field when electric current flows through it. One esu of inductance is defined as the inductance that induces an electromotive force of one electrostatic unit (esu) when the current changes at the rate of one esu per second. This unit is particularly significant in the context of electromagnetic theory and applications where the interaction of electric and magnetic fields is crucial. The esu is foundational in the study of electromagnetism, serving as a bridge between electricity and magnetism, capturing the essence of inductive behavior in circuits.

History & Origin

The origin of the esu of inductance can be traced back to the development of electromagnetic theory in the 19th century. The concept of inductance was introduced to describe how a changing current in a conductor could induce electromotive forces, a phenomenon first observed by Michael Faraday. The esu emerged within the framework of the centimeter-gram-second (CGS) system, which was widely adopted during the formulation of electromagnetic principles. This system provided a basis for measuring various electrical and magnetic quantities, facilitating a deeper understanding of electrodynamics.

Etymology: The term 'esu' stands for 'electrostatic unit', deriving from the foundational principles of electrostatics and electromagnetism.

1831: Michael Faraday demonstrates e...1901: Introduction of the CGS system...1940: Formal definition of esu of in...

Current Use

The esu of inductance is primarily used in theoretical physics and electromagnetic studies, particularly in the context of the CGS system. While the SI unit of inductance, the henry (H), is more commonly used in practical applications, the esu remains relevant in specific academic and scientific discussions. In fields such as plasma physics, astrophysics, and certain branches of electrical engineering, the esu serves as a reference point for understanding inductive behavior. Countries utilizing the esu include those engaged in advanced physics research, particularly within academic institutions that focus on classical electromagnetism. Its applications can be seen in simulations and theoretical models where traditional CGS units are preferred for historical continuity and pedagogical clarity.

AcademiaPhysics ResearchElectrical Engineering

šŸ’” Fun Facts

  • •The esu of inductance is rarely encountered in everyday applications but remains pivotal in theoretical discussions.
  • •Michael Faraday's experiments laid the groundwork for the concept of inductance and the establishment of the esu.
  • •The esu is part of the CGS system, which was once the dominant system of units in scientific literature.

šŸ“ Real-World Examples

0.1 esu
Inductance in a coil used in a radio transmitter
0.5 esu
Inductance measurement in a transformer
0.2 esu
Inductive load in an electric motor
0.15 esu
Inductance in a filter circuit for audio equipment
1 esu
Measurement of inductance in a Tesla coil
0.3 esu
Inductance in a solenoid for a magnetic lock

šŸ”— Related Units

Henry (1 H = 10^9 esu)Farad (Capacitance unit; related through LC circuits.)Volt (Induced voltage relates to inductance via Faraday's law.)Ampere (Current is a critical factor in inductance calculations.)Ohm (Resistance impacts inductance in circuit designs.)Coulomb (Charge influences current and thereby affects inductance.)

Frequently Asked Questions

How do I convert to ?ā–¼

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?ā–¼

The formula is: = Ɨ 1. This conversion factor is based on international standards.

Is this to converter accurate?ā–¼

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?ā–¼

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50