MetricConv logo
Home/Converters/Radiation

Gray Converter

Convert Gray to Tissue Roentgen and more • 73 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

GrayGy

Source Unit

The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.

1 Gy = 1 J/kg

Current Use

The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.

Fun Fact

The gray is equivalent to 100 rad, an older unit of absorbed dose.

Tissue RoentgentR

Target Unit

The tissue roentgen (tR) is a non-SI unit of measurement for radiation dose specifically indicating the amount of ionizing radiation absorbed by human tissue. It is defined based on the exposure of radiation in air and is conventionally linked to the biological effect on human tissue, primarily in the context of X-ray and gamma radiation. The tissue roentgen is significant in medical and safety applications, as it helps assess the potential damage that radiation can cause to living tissues, guiding treatment and safety protocols.

1 tR = 1 R * (Quality Factor)

Current Use

The tissue roentgen is primarily utilized in medical settings, particularly in radiology and radiation therapy, to measure the radiation dose that human tissues absorb. It serves as a critical unit in assessing the potential risks and benefits of radiation treatments in cancer therapy, where precise dosage is essential for maximizing treatment efficacy while minimizing harm to surrounding healthy tissues. Furthermore, it is also employed in safety protocols for workers exposed to radiation, ensuring compliance with health regulations.

Fun Fact

The tissue roentgen is considered a historical unit as it is being replaced by the SI unit gray (Gy) in many applications.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

Gy

Gray

radiationSI Unit

Definition

The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.

History & Origin

The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.

Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.

1975: The gray is officially adopted...

Current Use

The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.

HealthcareNuclear EnergyRadiologyEnvironmental Science

💡 Fun Facts

  • The gray is equivalent to 100 rad, an older unit of absorbed dose.
  • The gray is used in radiation therapy to ensure that the cancerous tissue receives a lethal dose while surrounding healthy tissue receives a much lower dose.
  • Louis Harold Gray was the first scientist to quantify the effects of radiation on living tissue, leading to advancements in cancer treatment.

📏 Real-World Examples

2 Gy
A patient receives a single dose of radiation for cancer treatment.
20 Gy
A radiation worker's annual limit for radiation exposure is set.
10 mGy
Diagnostic imaging procedures, such as CT scans, expose patients to radiation.
1.5 Gy
Radiation therapy for a thyroid condition requires a specific dose.
0.5 Gy
Environmental evaluations assess radiation levels after a nuclear accident.

🔗 Related Units

Rad (1 Gy = 100 rad)Rem (1 Gy = 100 rem (in terms of biological effect depending on radiation type))Sievert (1 Sv = 1 Gy for photons; used for equivalent dose measurement.)Joule (1 Gy is defined as 1 J/kg, linking it to energy absorption.)
tR

Tissue Roentgen

radiationNon-SI

Definition

The tissue roentgen (tR) is a non-SI unit of measurement for radiation dose specifically indicating the amount of ionizing radiation absorbed by human tissue. It is defined based on the exposure of radiation in air and is conventionally linked to the biological effect on human tissue, primarily in the context of X-ray and gamma radiation. The tissue roentgen is significant in medical and safety applications, as it helps assess the potential damage that radiation can cause to living tissues, guiding treatment and safety protocols.

History & Origin

The tissue roentgen is derived from the roentgen, a unit named after Wilhelm Conrad Röntgen, who discovered X-rays in 1895. It was initially used to quantify exposure to X-rays and gamma rays and was adopted by various medical and scientific communities to address the biological effects of radiation on human tissues. The development of the tissue roentgen was crucial for establishing guidelines in radiation therapy and safety, particularly in the early to mid-20th century when radiation treatments became more common in medicine.

Etymology: The term 'roentgen' comes from the name of the German physicist Wilhelm Röntgen, with 'tissue' indicating the focus on biological tissues in the context of radiation exposure.

1959: Tissue roentgen standardized a...

Current Use

The tissue roentgen is primarily utilized in medical settings, particularly in radiology and radiation therapy, to measure the radiation dose that human tissues absorb. It serves as a critical unit in assessing the potential risks and benefits of radiation treatments in cancer therapy, where precise dosage is essential for maximizing treatment efficacy while minimizing harm to surrounding healthy tissues. Furthermore, it is also employed in safety protocols for workers exposed to radiation, ensuring compliance with health regulations.

HealthcareNuclear MedicineRadiology

💡 Fun Facts

  • The tissue roentgen is considered a historical unit as it is being replaced by the SI unit gray (Gy) in many applications.
  • Wilhelm Röntgen, the namesake of the roentgen, received the first Nobel Prize in Physics in 1901 for his discovery of X-rays.
  • The tissue roentgen emphasizes the biological effects of radiation, contrasting with the roentgen, which focuses purely on exposure in air.

📏 Real-World Examples

500 tR
A patient receives a radiation therapy dose of 500 tR for tumor treatment.
50 tR
Radiologist measures the exposure during an X-ray procedure at 50 tR for safety assessment.
100 tR
Occupational exposure limit set at 100 tR per year for radiation workers.
10 tR
A patient is exposed to 10 tR during a CT scan.
200 tR
A safety protocol indicates a maximum allowable exposure of 200 tR in a nuclear facility.

🔗 Related Units

Gray (1 Gy = 100 rad, where 1 rad is the energy absorbed by 1 gram of tissue.)Rad (1 tR can be converted to a rad equivalent based on radiation type and quality factor.)Sievert (1 Sv is equivalent to 100 rem, which relates to how tissue roentgens are assessed for biological effects.)Roentgen (The roentgen measures exposure in air, while the tissue roentgen is focused on tissue absorption.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50