Convert Gray to Rad and more • 73 conversions
0
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
The gray is equivalent to 100 rad, an older unit of absorbed dose.
The rad (radiation absorbed dose) is a non-SI unit that quantifies the amount of ionizing radiation energy absorbed by a material, particularly human tissue. One rad is equivalent to the absorption of 0.01 joules of energy per kilogram of matter. This unit is mainly used in the fields of radiation protection and radiological science to assess the biological effects of radiation exposure. The concept of the rad was developed to help in the understanding of the dose-response relationship of radiation exposure and its potential biological effects.
The rad is currently used primarily in the United States for measuring absorbed radiation in medical, environmental, and occupational settings. It aids in determining appropriate radiation exposure levels for patients undergoing treatments such as cancer therapy and helps in assessing risks in occupational settings involving radiation.
The rad was once widely used in medical settings, particularly in oncology, before the adoption of the gray.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
radiation • SI Unit
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.
Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
radiation • Non-SI
The rad (radiation absorbed dose) is a non-SI unit that quantifies the amount of ionizing radiation energy absorbed by a material, particularly human tissue. One rad is equivalent to the absorption of 0.01 joules of energy per kilogram of matter. This unit is mainly used in the fields of radiation protection and radiological science to assess the biological effects of radiation exposure. The concept of the rad was developed to help in the understanding of the dose-response relationship of radiation exposure and its potential biological effects.
The rad was introduced in the 1950s during the early advancements in radiation therapy and protection. It was developed to provide a clear measurement of absorbed doses in biological tissues, allowing for better assessments of radiation risks. The unit was widely adopted in various fields, including medicine, environmental science, and nuclear safety.
Etymology: The term 'rad' is derived from the phrase 'radiation absorbed dose', highlighting its purpose in measuring radiation absorption.
The rad is currently used primarily in the United States for measuring absorbed radiation in medical, environmental, and occupational settings. It aids in determining appropriate radiation exposure levels for patients undergoing treatments such as cancer therapy and helps in assessing risks in occupational settings involving radiation.
Explore more radiation conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.