MetricConv logo
Home/Converters/Radiation

Gray Converter

Convert Gray to Femtogray and more • 73 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

GrayGy

Source Unit

The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.

1 Gy = 1 J/kg

Current Use

The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.

Fun Fact

The gray is equivalent to 100 rad, an older unit of absorbed dose.

FemtograyfGy

Target Unit

The femtogray (fGy) is a non-SI unit of absorbed radiation dose, equal to 10^-15 gray (Gy). The gray is the SI unit of ionizing radiation dose, which quantifies the amount of radiation energy absorbed per unit mass of tissue. In the context of radiation therapy and radiobiology, the femtogray is used to express extremely small doses of radiation, especially relevant in high-precision applications such as radiation dose assessments for sensitive biological systems or advanced medical treatments. Understanding these minuscule doses is crucial for evaluating radiation exposure in both medical and scientific fields.

1 fGy = 10^-15 Gy

Current Use

Femtogray is primarily utilized in high-precision radiation applications, including medical imaging, radiation therapy, and research involving extremely low doses of radiation. Its use is critical in studies assessing biological effects of radiation at micro-level doses, where traditional units might not provide adequate resolution. The femtogray is particularly relevant in fields such as radiobiology and dosimetry, where understanding the effects of low-dose radiation on human tissue is vital for safety and effectiveness.

Fun Fact

Femtogray is so small that it is often used to measure doses in highly sensitive biological systems.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

Gy

Gray

radiationSI Unit

Definition

The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.

History & Origin

The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.

Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.

1975: The gray is officially adopted...

Current Use

The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.

HealthcareNuclear EnergyRadiologyEnvironmental Science

💡 Fun Facts

  • The gray is equivalent to 100 rad, an older unit of absorbed dose.
  • The gray is used in radiation therapy to ensure that the cancerous tissue receives a lethal dose while surrounding healthy tissue receives a much lower dose.
  • Louis Harold Gray was the first scientist to quantify the effects of radiation on living tissue, leading to advancements in cancer treatment.

📏 Real-World Examples

2 Gy
A patient receives a single dose of radiation for cancer treatment.
20 Gy
A radiation worker's annual limit for radiation exposure is set.
10 mGy
Diagnostic imaging procedures, such as CT scans, expose patients to radiation.
1.5 Gy
Radiation therapy for a thyroid condition requires a specific dose.
0.5 Gy
Environmental evaluations assess radiation levels after a nuclear accident.

🔗 Related Units

Rad (1 Gy = 100 rad)Rem (1 Gy = 100 rem (in terms of biological effect depending on radiation type))Sievert (1 Sv = 1 Gy for photons; used for equivalent dose measurement.)Joule (1 Gy is defined as 1 J/kg, linking it to energy absorption.)
fGy

Femtogray

radiationNon-SI

Definition

The femtogray (fGy) is a non-SI unit of absorbed radiation dose, equal to 10^-15 gray (Gy). The gray is the SI unit of ionizing radiation dose, which quantifies the amount of radiation energy absorbed per unit mass of tissue. In the context of radiation therapy and radiobiology, the femtogray is used to express extremely small doses of radiation, especially relevant in high-precision applications such as radiation dose assessments for sensitive biological systems or advanced medical treatments. Understanding these minuscule doses is crucial for evaluating radiation exposure in both medical and scientific fields.

History & Origin

The concept of measuring radiation dose emerged significantly after the discovery of X-rays in 1895 by Wilhelm Conrad Roentgen. The gray was adopted as the SI unit of absorbed dose in 1975, named in honor of the British physicist Louis Harold Gray, who contributed extensively to the field of radiation research. The femtogray, representing a billionth of a microgray, was conceptualized to allow precise measurements in advanced radiation studies and applications, particularly where minute doses are critical.

Etymology: The term 'femtogray' combines the prefix 'femto-', derived from the Danish word 'femten' meaning fifteen, indicating a factor of 10^-15, and 'gray', named after Louis Harold Gray, the physicist.

1975: The gray was officially adopte...2010: The femtogray was increasingly...

Current Use

Femtogray is primarily utilized in high-precision radiation applications, including medical imaging, radiation therapy, and research involving extremely low doses of radiation. Its use is critical in studies assessing biological effects of radiation at micro-level doses, where traditional units might not provide adequate resolution. The femtogray is particularly relevant in fields such as radiobiology and dosimetry, where understanding the effects of low-dose radiation on human tissue is vital for safety and effectiveness.

MedicalResearchNuclear Energy

💡 Fun Facts

  • Femtogray is so small that it is often used to measure doses in highly sensitive biological systems.
  • The femtogray is a billionth of a microgray, illustrating the scale of radiation used in advanced medical applications.
  • Research into radiation effects at femtogray levels can reveal insights into cellular repair mechanisms after radiation exposure.

📏 Real-World Examples

100 fGy
Radiation therapy for cancer treatment
500 fGy
Dose measurement in radiobiology experiments
250 fGy
Calibration of radiation detection equipment
50 fGy
Safety assessment in nuclear facilities
10 fGy
Evaluation of low-level environmental radiation

🔗 Related Units

Microgray (1,000,000 fGy = 1 µGy)Nanogray (1,000 fGy = 1 nGy)Milligray (1,000,000,000 fGy = 1 mGy)Gray (1,000,000,000,000 fGy = 1 Gy)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50