MetricConv logo

Coulomb Converter

Convert Coulomb to Microcoulomb and more • 18 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

CoulombC

Source Unit

The coulomb (symbol: C) is the SI unit of electric charge, representing the quantity of electricity transported in one second by a constant current of one ampere. In terms of fundamental physical constants, one coulomb is equivalent to approximately 6.242 × 10^18 elementary charges, which is the charge of an electron. The coulomb is integral to the understanding of electromagnetic interactions, as it quantitatively describes the amount of electric charge in a system. This makes the coulomb pivotal in both theoretical and applied physics, particularly in contexts involving capacitors, electric fields, and electrochemical reactions. Additionally, the coulomb can also be expressed in terms of other base SI units, such as in the formula C = A·s, where A is amperes and s is seconds.

C = A·s

Current Use

Today, the coulomb is widely used in various fields, particularly in electrical engineering and physics. It is essential in calculations involving electric circuits, where current (in amperes) and voltage (in volts) interact to produce power, described as watts. In the automotive industry, the coulomb helps quantify the charge stored in batteries, which is crucial for the development of electric vehicles. Additionally, the coulomb is utilized in telecommunications for understanding signal transmission, where the flow of charge impacts the quality and speed of data transfer. Countries such as the United States, Japan, and members of the European Union employ the coulomb in both educational and professional settings, ensuring standardization in electrical measurements. The coulomb is also vital in electrochemistry, where it helps measure the quantity of electric charge required for reactions in batteries and fuel cells, thus playing a significant role in the transition to renewable energy sources.

Fun Fact

The coulomb is equivalent to the charge of approximately 6.242 × 10^18 electrons.

MicrocoulombµC

Target Unit

The microcoulomb (µC) is a unit of electric charge equal to one-millionth of a coulomb (10^-6 C). It is widely used in various applications where small quantities of electric charge are significant, such as in capacitors, batteries, and electrostatic applications. The coulomb itself is defined as the amount of charge that passes through a conductor carrying one ampere of current in one second. Therefore, the microcoulomb represents a very small charge, making it suitable for measuring minute electric phenomena. The microcoulomb is often utilized in laboratory settings and technical fields where precision in charge measurement is crucial, such as in semiconductor technologies and electrochemistry.

1 µC = 10^-6 C

Current Use

Microcoulombs are predominantly used in the fields of electronics and electrochemistry, where the measurement of small charges is essential. In electronics, devices such as capacitors and batteries may store or discharge microcoulombs of charge, necessitating precise measurement for performance optimization. In the medical field, devices like electrophysiological sensors utilize microcoulombs to measure the electrical activity of cells and tissues. Additionally, microcoulombs play a significant role in electrostatic applications, such as in inkjet printers, where precise charge control is vital for ink droplet formation. Countries with advanced technological infrastructures, including the USA, Japan, and Germany, often engage in research and applications that require microcoulomb measurements, especially in semiconductor manufacturing and nanotechnology. The increasing miniaturization of electronic components further underscores the importance of this unit.

Fun Fact

The microcoulomb is a common unit in applications involving electrostatics, including printers and sensors.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

C

Coulomb

chargeSI Unit

Definition

The coulomb (symbol: C) is the SI unit of electric charge, representing the quantity of electricity transported in one second by a constant current of one ampere. In terms of fundamental physical constants, one coulomb is equivalent to approximately 6.242 × 10^18 elementary charges, which is the charge of an electron. The coulomb is integral to the understanding of electromagnetic interactions, as it quantitatively describes the amount of electric charge in a system. This makes the coulomb pivotal in both theoretical and applied physics, particularly in contexts involving capacitors, electric fields, and electrochemical reactions. Additionally, the coulomb can also be expressed in terms of other base SI units, such as in the formula C = A·s, where A is amperes and s is seconds.

History & Origin

The coulomb is named after Charles-Augustin de Coulomb, a French physicist who is best known for his formulation of Coulomb's law in the 18th century. This law describes the electrostatic force between charged particles, laying the groundwork for electrostatics. The formal adoption of the unit occurred in the late 19th century as the field of electromagnetism developed. The International Electrotechnical Commission (IEC) officially adopted the coulomb as a standard unit in 1908, recognizing its importance in electrical engineering and physics. This historical context underscores the evolution of electrical measurement from qualitative observations to a standardized quantification of electric charge.

Etymology: The term 'coulomb' derives from the name of Charles-Augustin de Coulomb, reflecting his significant contributions to the study of electrostatics.

1785: Charles-Augustin de Coulomb fo...1908: Coulomb officially adopted as ...

Current Use

Today, the coulomb is widely used in various fields, particularly in electrical engineering and physics. It is essential in calculations involving electric circuits, where current (in amperes) and voltage (in volts) interact to produce power, described as watts. In the automotive industry, the coulomb helps quantify the charge stored in batteries, which is crucial for the development of electric vehicles. Additionally, the coulomb is utilized in telecommunications for understanding signal transmission, where the flow of charge impacts the quality and speed of data transfer. Countries such as the United States, Japan, and members of the European Union employ the coulomb in both educational and professional settings, ensuring standardization in electrical measurements. The coulomb is also vital in electrochemistry, where it helps measure the quantity of electric charge required for reactions in batteries and fuel cells, thus playing a significant role in the transition to renewable energy sources.

Electrical EngineeringTelecommunicationsAutomotiveElectrochemistryRenewable Energy

💡 Fun Facts

  • The coulomb is equivalent to the charge of approximately 6.242 × 10^18 electrons.
  • Coulomb's law is analogous to Newton's law of gravitation, both describing inverse-square relationships.
  • The coulomb is used in various applications, including the design of capacitors and batteries.

📏 Real-World Examples

2000 C
Charge of an AA battery
0.01 C
Charge in a capacitor
5 C
Electric current in a circuit
0.5 C
Charge transfer in electroplating
40000 C
Electric vehicle battery
20 C
Charge in a lightning bolt

🔗 Related Units

Ampere (1 coulomb per second is equivalent to 1 ampere.)Faraday (1 faraday is equivalent to approximately 96485 coulombs.)Volt (1 volt is defined as 1 joule per coulomb.)Joule (1 joule is equal to 1 coulomb times 1 volt.)Microcoulomb (1 microcoulomb is 1 × 10^-6 coulombs.)Nanocoulomb (1 nanocoulomb is 1 × 10^-9 coulombs.)
µC

Microcoulomb

chargeNon-SI

Definition

The microcoulomb (µC) is a unit of electric charge equal to one-millionth of a coulomb (10^-6 C). It is widely used in various applications where small quantities of electric charge are significant, such as in capacitors, batteries, and electrostatic applications. The coulomb itself is defined as the amount of charge that passes through a conductor carrying one ampere of current in one second. Therefore, the microcoulomb represents a very small charge, making it suitable for measuring minute electric phenomena. The microcoulomb is often utilized in laboratory settings and technical fields where precision in charge measurement is crucial, such as in semiconductor technologies and electrochemistry.

History & Origin

The concept of electric charge began to take shape in the 18th century as scientists like Charles-Augustin de Coulomb studied the forces between charged objects. Coulomb's Law, established in 1785, quantitatively describes how electrical force varies with charge. The coulomb was later defined as the unit of electric charge in the International System of Units (SI), formalized in 1889. The microcoulomb, as a subunit, emerged as the need for smaller measurements of electric charge became apparent, particularly in fields like electronics and physics, where micro-scale phenomena are common.

Etymology: The term 'microcoulomb' combines the prefix 'micro-', derived from the Greek word 'mikros', meaning 'small', with 'coulomb', named after Charles-Augustin de Coulomb.

1785: Coulomb's Law established by C...1889: Coulomb officially defined as ...

Current Use

Microcoulombs are predominantly used in the fields of electronics and electrochemistry, where the measurement of small charges is essential. In electronics, devices such as capacitors and batteries may store or discharge microcoulombs of charge, necessitating precise measurement for performance optimization. In the medical field, devices like electrophysiological sensors utilize microcoulombs to measure the electrical activity of cells and tissues. Additionally, microcoulombs play a significant role in electrostatic applications, such as in inkjet printers, where precise charge control is vital for ink droplet formation. Countries with advanced technological infrastructures, including the USA, Japan, and Germany, often engage in research and applications that require microcoulomb measurements, especially in semiconductor manufacturing and nanotechnology. The increasing miniaturization of electronic components further underscores the importance of this unit.

ElectronicsMedical DevicesElectrochemistryNanotechnology

💡 Fun Facts

  • The microcoulomb is a common unit in applications involving electrostatics, including printers and sensors.
  • One microcoulomb is equivalent to the charge of approximately 6.24 million electrons.
  • Microcoulombs are often used in nanotechnology research, where precise measurements at the micro-scale are critical.

📏 Real-World Examples

1 µC
Charge stored in a capacitor with a capacitance of 1 µF at 1 V
0.5 µC
Electrode charge transfer in a microelectrode during a voltammetry experiment
10 µC
Charge generated by a piezoelectric sensor when subjected to mechanical stress
1.5 µC
Charge required to print one droplet of ink in an inkjet printer
10 µC
Total charge from 5 microelectrodes each contributing 2 µC
0.2 µC
Charge lost by a capacitor discharging through a resistor over 10 microseconds

🔗 Related Units

Coulomb (1 µC = 10^-6 C)Nanocoulomb (1 µC = 1000 nC)Milliampere (Charge can be calculated from current in mA over time.)Farad (Capacitance relates charge in µC to voltage in V.)Volt (Voltage is the potential difference for charge in µC.)Ampere (Current in A affects charge (C) over time (s).)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50